Robust inference in generalized partially linear models
نویسندگان
چکیده
In many situations, data follow a generalized partly linear model in which the mean of the responses is modeled, through a link function, linearly on some covariates and nonparametrically on the remaining ones. A new class of robust estimates for the smooth function η, associated to the nonparametric component, and for the parameter β, related to the linear one, is defined. The robust estimators are based on a three-step procedure, where large values of the deviance or Pearson residuals are bounded through a score function. These estimators allow us to make easier inferences on the regression parameter β and also improve computationally those based on a robust profile likelihood approach. The resulting estimates of β turn out to be root-n consistent and asymptotically normally distributed. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. A robustWald test for the regression parameter is also provided. Through a Monte Carlo study, the performance of the robust estimators and the robust Wald test is compared with that of the classical ones. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملRobust Inference Based on Quasi- likelihoods for Generalized Linear Models and Longitudinal Data
In this paper we introduce and develop robust versions of quasilikelihood functions for model selection via an analysis-of-deviance type of procedure in generalized linear models and longitudinal data analysis. These robust functions are built upon natural classes of robust estimators and can be seen as weighted versions of their classical counterparts. The asymptotic theory of these test stati...
متن کاملRobust-BD Estimation and Inference for General Partially Linear Models
The classical quadratic loss for the partially linear model (PLM) and the likelihood function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of “robust-Bregman divergence (BD)” estimators of both the parametric and nonparametric components in the general partially linear model (GPLM), which allows the distribution of the response variable to be partia...
متن کاملRobust Inference in Generalized Linear Models
The weighted likelihood approach is used to perform robust inference on the parameters in a generalized linear models. We distinguish the case of replicated observations of the dependent variable for each combination of the explanatory variables, common in the design of experiment framework, and the case of one observation for each combination of the explanatory variables, very common in observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010